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on the development and understanding of the fundamental system theoreti-
cal basis for temporal dynamic networks. The main thrust of the research
hinges upon a thorough understanding of several key issues regarding tempo-
ral dynamical system modeling, including model unification, training efficiency,

generalization performance, and hierarchical network structure.

¢ Distributed Training Strategy and Decision-Based Neural Net

We have studied a class of neural models based on distributed credit-
assignments, with hard or fuzzy decision rules, leading to theoretical

understanding of multi-modal analysis and a structural unification of

neural models.

e Temporal Dynamic Models

The aim is to design models which best capture the transient charac-

teristics and/or contextual information of temporal patterns. We shall
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explore a prediction-based neural classifiers and compared it with other
temporal models such as HMM, TDNN and RNN. More fundamentally,
we shall pursue a unification framework for temporal dynamic models,
based on a Hamiltonian-Jacobian system theory. A new energy formu-
lation will be introduced to tackle the issues of training efficiency and

generalizability of temporal networks.

Principal Component Analysis and Applications

We have developed a new learning network model for Principal Compo-
nent of a single process and extended the learning models for extracting
the asymmetric principal components of a pair of signals. The lateral con-
nection network enforces orthogonality between the feed-forward weights
which is essential for the extraction of the orthogonal principal compo-
nents. The novel structure also facilitates the growing or shrinking of the

network whenever an order update is required.

Generalization

The focus of study is placed on identification and capacity theoretical per-
spectives of learning and generalization; numerical analysis for training
efficiency, and network reduction and growing techniques for improving

generalizability.

Digital Parallel Neural Processor

A unified model supporting various connectivity structures and nonlinear
functions is developed. This leads to the design of neural array processors
based on highly pipelined ring systolic/wavefront architectures. Specifi-
cally, one-dimensional and two-dimensional array structures for various

neural networks have been developed. In addition, we have developed




a high-level timing simulations by SISim. A precise simulation tool is

required in order to obtain an estimate closer to the real world.
Overally, we have completed the following objectives:

o Neural networks for static and temporal pattern recognitions and a uni-

fied formulation for both application domains.

¢ Develop versatile neural models, including a decision-based neural net
(DBNN), and a fuzzy-decision neural net (DBNN), and study the gener-

alization performances.

o Experimental study and comparison based on real-world application ex-

amples.

e Stress numerical analysis regarding learning rates and convergence prop-

erties to facilitate digital implementations.

In summary, these research works represent an array of related and compre-
hensive research tasks which are outstanding but yet very critical to a coherent
treatment fo neural models. For temporal pattern recognition, it will be ben-
eficial to explore the rich theoretical relationship between the novel neural
classifiers and the conventional theory on system identification and nonlinear
filter. Ultimately, the theoretical analyses should be in one way or another re-
alized in real-world applications on temporal pattern recognition. In a broader
sense, the study naturally covers the algorithmic bases for distributed and
massively parallel processing, so it will have a very positive implication to the
future on-line information processing technologies. The detailed technical dis-
cussion can be found in a recent book by Kung [5]. Soe sample cases of the

aforementioned accomplishments will be discussed below.




2 Distributed Training Strategy and Decision-Based
Neural Net

2.1 Theoretical Study

Supervised networks may be systematically developed according to several key
design factors, including training strategy, temporal property, network struc-
ture, and training criterion. The training formulation can be either decision-
based or back-propagation approximation-based or hybrid. Key research issues
such as distributed and localized credit assignments and hierarchical system
design are yet to be thoroughly investigated. To focus on training only critical
subnets or subnodes, a novel localized credit assignment scheme is adopted in
the decision-based neural network (DBNN) [5]. To improve generalizability,
proper cost criterion (with a “soft” decision) may be incorporated. This leads
to the development of the so-called fuzzy-decision neural networks (FDNN)
[8]. The DBNNs and FDNN can be naturally applied to temporal recognition
problems due to its simple winner-take-all principle. In fact, the indepen-
dent training is conceptually and computationally very appealing to temporal
models. The DBNN structure may be combined with temporal discriminant
functions including, for examples, DTW, prediction error, and likelihood func-

tion.

1. Distributed Training Strategies

The training strategy may be greatly influenced by the credit-assignment
schemes used. For best efficacy, the design hierarchy is purposefully di-
vided into two stages. The first involves individual training by achieving
an optimally trained model function ¢(-). Its performance may be further

improved by incorporating mutual training methods used in the DBNN.
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The irdividual training method (either discriminative or intrinsic) is of-
ten formulated under an optimization formulation. For the independent
training strategy, each subnet is trained by the positive-examples only
and it implies potential computational saving. Note however that the
training can be effective only when the cost criterion is properly chosen.
Following the independent training phase, the mutual training phase will
be executed when there is a need to further enhance the overall perfor-
mance. This scheme is particularly suitable to temporal pattern recogni-
tions. We shall further explore the two-phase training strategy so as to
envision the optimal hybrid scheme combining the merits of both inde-

pendent and mutual training.

. Fuzzy Decision Neural Networks

The objective is to improve generalization performance. This may be
accomplished by incorporating vigilance or tolerance into the mutual
training strategy. A more formal approach is via a notion of fuzzy-
decision neural networks(FDNNY)[5, 8]. In the FDNN, a penalty function
as a function of the degree of errors should be adopted. Since a linear cost
function would impose an unproportional penalty for the patterns with
extremely large error, an inverse expenential function is more appealing.
It effectively treats the errors with equal penalty once the the magnitude
of error exceed certain threshold, making the cost criterion very much in
accordance with the so-called "minimum-error-rate” criterion by Duda
[3]. In addition, the new format also facilitates a network to produce
multiple options each assigned a corresponding probability, instead of
one single best decision. This precipitates the use of fuzzy rules in the

subsequent information processing. We shall also explore the theoretical




justification on convergence and generalization as well as the selection of

proper penalty functions.

2.2 Applications of Decision-Based Neural Networks

in our research, a new class of decision-based neural networks (DBNN) have
been proposed. These networks combine the perceptron-like learning rule with
a hierarchical nonlinear network structure, so they are termed HiPer Nets. Two
HiPer net structures are proposed: hidden-node and subcluster structures. We
shall explore several variants of HiPer nets based on the different hierarchical
structures and basis functions and then examine the relationships between
HiPer nets and other DBNNs, e.g. Perceptron and LVQ. Based on the simu-
lation performance comparison, the HiPer nets appear to be very effective for
many signal/image classification applications, including texture classification,
OCR, and ECG.

For more flexibility in the nonlinearity of decision boundaries, two hierar-
chical structures, i.e. hidden-node and subcluster structures, are considered.
In training a complex hierarchical network, the key questions to be addressed
are which subnets or subnodes to update, and how to update. The answer
to “ which” lies in a novel competition-based “credit-assignment” principle:
the anti-reinforced learning should be applied to (the winning subnode in) the
winning subnet; while the reinforced learning be applied to (the local-winner
in) the correct class. (By this mechanism, the weight updating can be most
effective and confined to only a subset of “growing” modules.) The answer to

“ houw” is provided in Algorithm 1.

Decision-Based Neural Networks




Algorithm 1 (Decision-Based Learning Rule)

Suppose that S = {x“), o xM )} 1s a set of given training patterns, with each
pattern x(™) € RN belonging to one of the L classes {Q;,i = 1,---,L}; and
that the transfer functions are ¢(x,w;) for i = 1,...,L. Suppose that the
m-th training pattern x(™) presented is known to belong to class Q;; and that

the winning class for the pattern is denoted by an integer j, i.e. for alll # j,
B(x(™, wi™) > ¢(x(™), w{™) (1)

(1) When j = 1, then the pattern x(™) is already correctly classified, so no
update will be needed.

(2) When j # 1, i.e. x(™) is still misclassified, then the following update will

be performed:

Reinforced Learning: w‘(m“) = W,(m) + nVé(x, w;) (2)

Anti- Reinforced Learning: wimtl) _ lm) _ nVé(x,w;
3 3 3

In this learning rule, the reinforced learning moves w along the positive gra-
dient direction, so the value of transfer function will increase, enhancing the
chance of the pattern’s future selection. The anti-reinforced learning moves
w along the negative gradient direction, so the value of transfer function will

decrease, suppressing the chance of its future selection.

Radial Basis Function These models use a radial-basis function (RBF) and
are very effective for practical applications, especially for nearest-neighbor-type

classifications. In this case, a simplest radial-basis transfer function
x—wy |2
B(x, wp) = _”_é_!l (3)

is used for each subnet {. Thus the following learning rules can be derived:

7




Reinforced Learning: me“) = W.(m) +n(x - W.(‘m))
(m+1 (m)

(4)

Anti-Reinforced Learning: w - n(x - wgm) )
This is the basic formula for a Generalized LVQ (GLVQ) algorithm, which is

very close to the LVQ2 algorithm.

Elliptic Basis Function In terms of second-order basis functions, the most
general form is the (skewed) hyper-elliptic basis function. For simplicity, how-
ever, in most application experiments, the EBF is confined to the normal

(upright) version.

Hierarchical Network Structure So far we have adopted a nonlinear
transfer function represented by a single-layer model in each subnet. However,
the single-layer model may be inadequate for very complex decision boundaries.
So we resort to a structural solution. Two basic structures of the Hierarchical
Perceptron (HiPer) nets are are called hidden-node structure and subcluster
structure, based respectively on a distribution-oriented and a winner-take-all
approach. In order to have a consistent indexing scheme for the hierarchical
structure, we shall label the subnet level by the index [, and label the subnode
level (within a subnet) by the index k;. In a sense, the HiPer Net learning
rule represents a unified framework for a insightful understanding of several

prominent decision-based networks, in~luding Per-eptron, LVQ, PNN.

Hidden-Node Structure One way to create a more versatile transfer
function is to use a two-layer model for each subnet. In this case, a hidden
layer is introduced which consists of multiple “hidden” subnodes, each of which

represented by a basis function 9(x, wx,). The transfer function of the subnet




is a linear combination of the subnode values:

K

B(x,wi) = Y e tu(x, wy,) (5)

k=1

where {ci,} denotes the coefficients in the upper layer and w; is the vector
comprising all the weight parameters. (We stress the fact that, under the
decision-based formulation, there is no need to use a nonlinear unit at the
output layer, since it will not affect the classification results.)

The most common basis functions, ¥i(x,Wy,), for che subnodes include
linear-basis function (LBF), radial-basis function (RBF), and elliptic-basis
function (EBF).

Subcluster Structure For the subcluster hierarchical structure, we in-
troduce notions of local winner and global winner. The local winner is the
winner among the subnodes within the same subnet. The local winner of the

l-th subnet is indexed by sy, i.e.
8 = Argm.?.xwl(x,w,,)

The global winner is the winner among all the subnets. The j-th ~ubnet will
be labeled as the global winner, if its local winner wins over all the other local

winners, i.e.

1/’3‘(3(, wlj) > ¢l(x1 wll) vl # .7

Key Variants of HiPer Nets As listed in Table 1, examples for hidden-
node and subcluster HiPer nets are respectively HiPer(Lj), HiPer(Ry), and
HiPer(L,), HiPer(R,), and HiPer(E,).




HiPer Nets | transfer function remark
. generalization
HiPer(L,) | linear basis
of linear perceptron
HiPer(R,) | radial basis - also named GLVQ
HiPer(E,) | -elliptic - similar to LVQ
) weighted sum of sigmoid of .
HiPer(Ls) - can use BP algorithm
linear bas.s function
) weighted sum of o
HiPer(Rp) - similar to PNN
Gaussian on RBF

Table 1: Key variant of HiPer Nets. Here capital letters “L”, “R”, and “E”

stand for linear, radial, or elliptic basis functions respectively. A subscript

denotes a subcluster structure, while a subscript “h” denotes a hidden-node

structure.
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Applications to Signal/Image Classifications In order to test the per-
formance of the DBNNs, several application examples are studied, including

texture classification and OCR.

Texture Classification Based on the texture classification applicztions,
we compare the performance of radial-basis and elliptic-basis GLVQs, denoted
as HiPer(R,) and HiPer(E,) respectively. As a comparison, we have also in-
cluded a linear-basis hidden-node structure HiPer(Lg) into the study.

The texture feature used here is based on a compressed representation of the
tezture spectrum. The texture vector associated with a pixel is characterized by
8 “ternary” values, {0, 1, or 2}, labeling the relative level between the central
pixel and its 8 immediate neighbors. In the simulation study, a total of 12
Brodatz textures (texture numbers 3, 16, 28, 33, 34, 49, 57, 68, 77, 84, 93, and
103) are used. For each texture image, 529 32x32 blocks are sampled uniformly
across the entire image. Their reduced spectra are then computed which will
in turn used as the training data. By a similar method, additional 200 blocks
are randomly chosen from the same texture image to form the test set. The
linear-basis hidden-node structure HiPer(Ly), and two subcluster structures:
HiPer(R,) and HiPer(E,) have been tried. The classification performance is
summarized in Table 2. The results indicate a good convergence and accuracy.
The generalization performance of HiPer(E,) is slightly better than that of
HiPer(R,), with the HiPer(L,) as a distant third.

Optical Character Recognition (OCR) Application The problem
is to recognize a rectangular pixel display as one of the 26 capital letters in
the English alphabet. The character images were based on 20 different fonts

and each letter within these 20 fonts was randomly distorted to produce a file

11




Network Noise Tolerance | Test Error Rate
HiPer(L4)(20) | 0(200 sweeps) 3.25%
HiPer(R,)(4) | 0(20 sweeps) 2.88%
HiPer(R,)(4) 0.13 2.42%
HiPer(R,)(8) 0(7 sweeps) 3.54%
HiPer(R,)(8) 0.2 2.92%
HiPer(E,)(1) | 0(200 sweeps) 3.04%
HiPer(E,)(4) | 0(17 sweeps) 2.46%
HiPer(E,)(4) 0.15 2.08%

Table 2: Comparison of various HiPer nets for the texture classification. The
number in the parenthesis denotes the number of subnodes in the subnet. The
classification rates on the training set are 100% for all the models. The excep-
tions are 99.5 for HiPer(E,)(1) and 98.4 % for HiPer(L,)(20). We have also ob-
served that, with some additional adjustment of learning rate, the HiPer(E, )(4)

can achieve as low as 1.4 % in the error rate.
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Algorithm | No. of Clusters | Training Error | Test Error
HiPer(E,) 10 0.0375% 6.2%
HiPer(R,) 20 0.025% 7.5%

Table 3: Comparison of two HiPer nets for the OCR classification.

of 20,000 stimuli. Some sample characters are used in the OCR classification
experiments. Several variations of Holland-style adaptive classifier systems was
previously investigated by by Frey (1991) and the best accuracy obtained was
a little over 80%. We have used the first 16000 items as the training patterns
to training the network. Then in the testing phase, for the remaining 4000 are
used as the testing patterns, for which the trained network is used to predict
the letter category.

Two HiPer nets are tried for this application and the simulation results are
summarized in Table 3. In this simulation, 10-subcluster H PN(E,) performs
better than 20-subcluster HPN(R,). (Note the number of the weight param-
eters are approximately the same for the two nets.) Both HiPer nets perform

better than the results previously reported.

ECG Signal Classification In general, we are inclined to state that the
DBNNs appear to be superior to the approximation-based nets in terms of both
the convergence speed and training accuracy. ! According to our experimental
study on ECG classifications, cf. Table 4, they seem to retain the edge in the

generalization performance as well.

'Indeed, the texture experiments also showed that the DBNNs out-perform the (BP)
approximation-based nets. The BP method was very slow and the mean-square-error re-

mained very large after 500 sweeps. So the experiments were stopped.

13




Algorithm Test Accuracy
Approximation-based | LBF-BP(20)(mse:0.05) 78%
RBF-OCON(4) (mes:0.1) 80%
Decision-based HiPer(E,)(2) 90%
HiPer(R,)(4) 90%

Table 4: Comparison of ECG classification for 10 signal classes. The training

accuracies are 100% for all the models. QCON stands for one-class-one-net.

For HiPer(E,)(2), a noise toleranrz ~f 0.5 is adopted.

3 Temporal Dynamic Models

3.1 Theoretical Study

There is an emerging need of a fundamental approach to the modeling and
analysis of temporal networks. For temporal pattern recognition, the t-~nsient
characteristics and contextual information of the signals must be accounced
for. Therefore, the temporal dynamic modeling deserves to be looked at from
an innovative perspective. The conventional TDNN suffers from several critical
drawbacks in terms of real-world applications. Its complexity usually incurs
time-consuming training process. The prefixed span of time-delay often renders
it less suitable for heavily warped (speech) signals. Accordingly, the issue of
selecting an optimal structure of temporal dynamic model (TDM) remains a

very open topic. In the following, we propose several theoretical and empirical

approaches to the study of temporal behaviors.

1. Temporal Model Understanding

14




For temporal pattern recoguition, it is critical to incorporate memory
units into the neural network, e.g. time-delay units in deterministic net-
works or Markovian state transition in stochastic networks. The ques-
tions are when and which one to use for the best possible cost /performance
efficiency. We shall examine how to cope with the tradeoff between
the improved recognition performance and higher network complexity
in terms of a large number of memory units. We note that, for example,
some structures are naturally suitable for differentiation or integration
of the signals. Thus the temporal dynamic network should be designed
according to the application needs. Among several competing techniques
are recurrent nets and Markov models. There are significant distinctions
in the fundamental properties between the two prominent models. Our
study also shows that they are very much related, theoretical and ap-
plication ground exists for possible cross-fertilization [5|. We propose to
develop a hybrid model which integrates the strengths of BP, RNN, and
HMM. A successful integration would imply smaller network size, better

temporal robustness/generalizability, and faster training efficiency.

. Recognition of Transient and Other Temporal Characteristics

The question now is how to design networks to best capture the tran-
sient cuaracteristics of temporal patterns. The proposed model is the
prediction-based independent training{PBIT) network, based on the same
principle as linear predictive filter [10, 5]. Its training involves positive-
ezamples only. A Gaussian network defined as a linear combination of
N-dimensional Gaussians, denoted by N(z,u,X), can be used as a uni-
versal approximator or predictor. The network can capture the more

eventful segments in the training waveforms. Therefore, the classifier

15




can be tolerant to the shifting and warping of the signals. Moreover, the
transient characteristics can be easily captured by the predictive error
criterion. To determine the optimal filter-order (window size) of PBIT,
a generalization or information criterion may be adopted. For a rela-
tive performance study, the nonrecurrent prediction-based models will

be compared with other recurrent models, e.g. [11].

The nonlinear predictive filter has potentially other applications. In the
recursive identification problem, the recorded output from the system
is compared to that of an adjustable model. The model parameters are
updated according to the difference until the difference cannot be further
improved. A similar approach can be applied to the adaptive control
procedure which compares the actual output of the plant with that of a
reference model, and make adjustments in the regulator until the plant

output coincides with the model output.

. Unification of Temporal Dynamic Models

Many theoretical techniques for training recurrent neural networks are
proposed based on a generalized BP learning rule, in which the gra-
dients are computced via backpropagation through both the time and
the space. Based on a Hamiltonian-Jacobian framework, a new energy
formulation may be introduce: ‘> tackle the very important issues of
training efficiency and generalizability of temporal networks. It leads
to an intriguing interplay between the time for dynamic behavior ¢ ver-
sus the training time s the system parameters. With an extra set of
derivative variables, it is possible to compute the gradient without the
explicit "time” backpropagation. Another issue is the stability of non-

linear neural systems [1]. Because the RBF models have already marie a
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major inroad in temporal pattern recognition, it is important to extend
the present Hamiltonian TDM analysis to the RBF models. In a even
broader setting, such temporal dynamic models could provide a unified
framework between LBF/RBF neural models, adaptive nonlinear filters,
stack filters, and IIR (infinite-impulse-response) filters [4, 7].

3.2 Applications of Temporal Networks

Prediction-Based Independent Training Networks(PBIT) The PBIT
is suitable exclusively for temporal pattern recognition. The theoretical basis
of the PBIT follows that of the linear predictive filter, which is very popular in
the signal processing research community. The main distinction of PBIT from
the linear predictive classifier lies in its use of nonlinear neural functions.

In training a PBIT networks, an N-dimensional training signal x is first put
through a time-delay neural network, cf. Figure 1, where many time-delayed

N-dimensional vector segments can be extracted:
x; = [2(j+1)...2(j + N)]

where z(j) denotes the ji, element of the pattern x. A Gaussian network
(see Figure 1), defined as a linear combination of N-dimensional Gaussians,
denoted by N(z,u,X), can be used as a universal approximator or predictor.

To predict z(j + N + 1) by x;, let us use the following predictor:

K
fa(x3) = Y weN(xj, gk, k) + wo
k=1

where the corariance matirx I is a diagonal matrix. For each class we assign

a Gaussian network to it and the prediction error for a pattern (say, m-th

17




Delayed input segment

Figure 1: A Gaussian RBF TDNN for prediction of a future sample.

pattern) is defined as

N-N
Et™ = 3 (fa(x;) - 2(j + N +1))?

i=1
By this formulation, the classifier is made more tolerant to the shift and the
length of the signal. The centroids of the Gaussian function can help capture
the information about the key segments in the or iginal signal.

Here we adopt an independent training strategy. For each class, a Gaussian
network described above is trained so that the sum of the prediction errors from
all the training patterns, m=1,--- M:

M
E= Z E(™)
m=1
is minimized.

In the retrieving phase, given a test pattern x(™), the prediction errors

E(™) for all the classes will be computed and compared. The pattern z,, is

classified into the class with the smallest prediction error.
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Network | Training Set | Test Set
PBIT 100% 96%
HMM 100% 92%

DBNN(E,) 100% 90%

Table 5: In this simulation, the window size for PBIT is 20 and the variances

of the Gaussians are fixed to be 1.

Simulation Results: ECG Classification of PBIT To demonstrate
the feasibility of PBIT, some simulation results are reported here. In this
simulation, we apply PBIT to 10 ECG classes. Each class has 10 patterns and
half of them are used as training set. The segment from the sliding window and
the next sample value are adjusted by the mean value of the segment so that the
classifier is more tolerant to local DC level of the ECG signal. The simulation
results are summarized in Table 5. PBIT yields the same training performance,
as compared with the HMM (also an independent training method) and the
DBNN (a mutually training model). In terms of the generalization accuracy,
PBIT compares favorably with the HMM and DBNN.

HMM for Time-Warped Signal Classification To test the power of the
HMM, some time-rescaled ECG waveforms are used for recognition. The orig-
inal ECG data are composed of 10 classes with 10 waveform patterns in each
class. Those ECG patterns were resampled with respect to different sampling
rates (50/T, 60/T, and 70/T in this experiment where T is the period of a sin-
gle ECG pulse). The resampled data were then quantized into 20 levels which

correspond to 20 observation symbols. The HMM is independently trained.
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Sampling Rate | First Group | Second Group
50/T 100% 88%
60/T 100%* 90%
70/T 98% 92%

Table 6: The test accuracies with the respect to different groups of resampled
data. As marked by the “” this test set is equivalent to the training set, i.e.

the training accuracy is 100 %.

For each sampling rate, there are 100 sampled waveforms. These are further
divided into two groups with 50 waveforms each. The first group of 60/T sam-
pled waveforms is used as the training set, while the remaining groups are used
as the testing sets. The testing accuracies are displayed in Table 6. The re-
sults indicate that the HMM does exhibit a good tolerance for the time-rescaled

wavefcrms.

4 Principal Component Analysis and Applications

A connection is made between APEX and the Recursive Least Squares (RLS)
algorithm which provides us with an optimal value for the step-size parameter
and drastically improves the performance of the algorithm. We have shown
that the convergence rate of the network to be exponential and we are in fact
able to analytically approximate it for each component while we verify our
prediction via simulation.

We have justified the feasibility of a parallel APEX model, which we then

simulate and study its convergence properties. Furthermore, two learning net-




work models based on the Hebbian rule are proposed for extracting the Prin-
cipal Oriented Component of a pair of signals. Mathematical analysis based
on approximation assumptions proves the asymptotic convergence of the first
model to the desired component.

We have proved that in a two-layer supervised linear feed -forward network
with fewer hidden units than input and output units the optimal solution to
the least-squares criterion is related to the Generalized Singular Value Decom-
position between the input data matrix and the input-output outer product
matrix. This holds true even if the input data are rank-deficient, i.e. the input
autocorrelation matrix is non-singular. We call the problem Linear Approxi-
mation Asymmetric PCA since PCA is a special case when the teacher of the
network is equal to the input of the network. Wiener filtering is also shown to
be a special case of linear approximation APCA.

We have verified that the least-squares cost function contains no local min-
ima under reasonable assumptions and therefore, the gradient descent type
algorithms like Back-Propagation will be able to achieve the global minimum.
However the minimum is not unique and BP extracts some linear combination
of the asymmetric PCA components rather than the components themselves.
In order to extract the exact generalized singular components related to linear
approximation APCA we propose to use a lateral connection network among
the hidden units in addition to the feed-forward connections that exist in the
standard BP network. We propose two types of learning rules for the lateral
net: the dynamic and the local orthogonalization rules.

The cross-correlation APCA problem is shown to be related to the SVD
of the cross-correlation matrix of two signals and can be tackled by another

proposed linear learning network. The network again features the lateral con-
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nections we found useful in both the PCA and the linear approximation APCA
problems. It is f -mally shown that our model indeed extracts the desired sin-
gular vectors of the cross-correlation matrix and the accompanying simulations

verify this ciaim and also imply that the convergence is exponential.

5 Generalization

The primary research issues are how to come up with an effective and practical
generalization criterion and how it affects the estimation the optimal number
of clusters or hidden-units. A promising approach towards this objective is
to combines the knowledges from neural information processing, system iden-
tification theory and temporal dynamic system analysis. In order to achieve
a high computational efficiency, numerical and convergence analyses of neural
models are indispensable. It is also important to investigate the estimation of
optimal learning rate and convergence speed rate for riultilayer networks based
on both backpropagation and orthogonal learning rules. The scheme has been

successfully applied to the APEX networks [6].

1. Identification Perspective of Learning and Generalization

An important design issue for multi-layer networks is the number of hid-
den units, which dictates the space separability and the discriminating
capabiiity of the network. The optimal hidden-layer size depends on the
trade-off between training accuracy and the generalization accuracy. We
shall propose a flexible and systematic scheme in the selection of the en-
ergy function for the training phase so as to improve generalizability. For
example, by regularization it avoids direct penalty due to an exceeding

number of neurons.
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The generalizability is the most critical criterion. We shall study from
both perspectives of identification (curve-fitting the sample points) and
capacity (minimizing risk). Minimizing the following generalization cri-
verion (see [9]}

d())

Exp(l+—7) (6)

leads to one optimal estimate of the size. The formulation also suggests
that the marginal effects on the “effective dimension” diminish when the
size of the network‘ﬂ;comes extraordinarily large. So some weights may
be removed without causing too much degradation on the generalization
performance. This provides a starting point for a theoretical study on
the cstimation of the optimal size. In this study, the theoretical analysis
will be supplemented by real experiments to evaluate the proper criterion

(ML, LSE, etc ) iur real-world app'ications.

. Training Efficiency: Numerical analysis

For many real-time applications, fast and parallel updating algorithms
are indispensable. The question is how to improve training efficiency
and better control its numerical behavior. We have already demon-
strated an analytical approach which estimates optimal learning rates.
The result tightly match the real numerical simulation results for spe-
cial PCA nets [5, 2]. For the general nets, we propose to derive the
optimal learning rates directly via the recursive least square algorithm,
with or without a forgetting factor. More advanced, the Jacobian train-
ing formulation sheds light on the generalization performance as well as
the numerical training efficiency. The Jacobian matrix of a feedforward
network with nonlinear sigmoid output neurons is often ill-conditioned.

Due to the ill-conditionedness, there are redundant weights in the net-
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work. Thus we shall study proper neuron and basis functions to avert
the ill-conditionedness and enhance discriminative capability. We -will
also analyze the eigenvalues of the Jacobian w.atrix and use this tool to

remove redundancy.

6 Digital Parallel Neural Processors

A unified model supporting various connectivity siructires and nonlinear func-
tions is developed. This leads to the design of neural array processors based
on highly pipelined ring systolic/wavefront architectures. Specifically, one-
dimensional and two-dimensional array structures for various neural ne;works
have been developed.[5] In aldition, we have developed a high-level timing
simulations by SISim. A precise simulation tool is required in order to obtain
an estimate closer to the real worid.

In order to get ar accurate information about the behavior of a system, both
the hardware and the software must be specified precisely. This motivates the
development of a simulation tool - SIStm. The SISim simulator is a system level
interactive simulator developed at Princeton. The most important application
of SISim is to help estimate more accurately the total computation time. There
are two input file modules required for SIStm processing: one for the hardware
and the other for the software. The hardware description module contains a
‘cfg’ file and several ‘hwd’ files. ‘cfg’ file specifies the configuration of the target
system, and ‘hwd’ file g'ves a more detailed description for the hardware of
each processor. The software description module, on the other n~nd, contains
a ‘prg’ file and several ‘swd’ files. The ‘prg’ files associate each processor with
a program which this processor should execute, and the detailed program is

given by a ‘swd’ file. Figure 2 illustrates a description of a matrix-vector

24




multiplication on a 5-processor array.

The SISim itself consists of three components: PARSFR, DRIVER, and
ISIM. The PARSER reads the hardware and software description modules and
creates an internal data structure which will be used as the base of the next
(DRIVER) simulation stage. The DRIVER, based on a time-table, is used
to simulate the behavior of the target system. When SISim is used in an
interactive mode, the ISIM will also be invoked, which works together with
PARSER and DRIVER. The ISIM allows the user to check the status of any
system component at any time during the simulation period. The final statis-
tics concerning the real execution time for each processor is stored in the ‘rst’
file.

SISim may be applied to the back-propagation network to determine more
realistic speed-up-factors for the linear array or the rectangular array imple-
mentations. It also provides a more exact analysis of how the different param-
eters (e.g. computation time, communication time, buffer size, memory fetch,

etc.) affect the overall performance of the array processors.
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fa)

‘PElLswd’

@INITIAL _COUNTER&SUM
MOVE MEM.10 REG.0
MOVE MEM.11 REG.1

@MULTIPLICATION

COMPUTE FP_ALU REG.2 MEM.*C REG.3
@ACCUMULATION&OUTPUT
COMPUTE FP_ALU REG.] REG.3 REG.1
OUT REG.2 FIFOS

@UPDATE_COUNTER

COMPUTE FX_ALU REG.0 _ REG.0
*LOOPEND C

@SAVE_RESULT

MOVE REG.1 MEM.11

*END
(c)

Figure 2: An example for neural net retrieving phase. (a) Configuration de-

scription for the whole system. (b) The hardware description for a single

processor. (c) The software description for the program executed by a single

processor.
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